Name \qquad per \qquad date \qquad mail box \qquad

Basic Atomic Structure of the Atom

DO NOW: Label - \square

Combined these form:

Directions: Complete the chart using your knowledge about subatomic particles.

Subatomic Particle Name	Charge	Location
	Negative	In nucleus
Neutron		

Label the parts of the Periodic Table square for Carbon

The number of protons in the nucleus of an atom.

Short-hand abbreviated for the element name

Often from Greek or Latin for a word containing the element or in honor of its discoverer.

The average mass from the sum of both protons and neutrons.

Complete before the end of the period:
$1^{\text {st }}$ simply arrange the model atoms in the order you believe they were developed and appeared.
$2^{\text {nd }}$ Jot down what you hypothesize is the properly matched Scientist and their model.
NOTE Letters on Cards

1. Democritus / Dalton \qquad Thomson \qquad Rutherford \qquad Bohr \qquad Cloud \qquad Quantum \qquad
2. Atoms are smaller than nanometers in size.

45 mm on this page
One millimeter equals 1000 micrometers. One micrometer equals 1000 nanometers.
This model atom measures 45 millimeters across on this page.
The scal here is $1 \mathrm{~mm}: 0.00444 \mathrm{~nm}$
Has the atom been scaled up (zoom in) or scaled down (zoom out)? cirlce one

3. In reality, this atom is really what size? Select the most accurate response.
A. 1000 nanometers
B. 1 micrometer
C. 0.2 nanometers
D. 45 millimeters

4. Pick any of the models from today and explain it. Use the terms Nucleus, Proton, Neutron, Electron 1-2 Sentences Legible \& tell me name of model. \qquad
\qquad
\qquad
5. Why did many scientists oppose the Bohr Model when he first proposed it? Discuss particles and charge
6. Extend: Cut a block of wood in $1 / 2$, then in $1 / 2$ again and again.... How might Democritus have concluded, that it was not possible to divide a piece of matter forever?

Name Key
per \qquad date \qquad mail box \qquad

Basic Atomic Structure of the Atom

DO NOW: Label -

Directions: Complete the chart using your knowledge about subatomic particles.

Subatomic Particle Name	Charge	Location
Proton	positive	In nucleus
electron	Negative	outside nuelens
Neutron	neutral	nucleus

Label the parts of the Periodic Table square for Carbon

The number of protons in the nucleus of an atom.

Symbol

Shorthand abbreviated for the element name

Element Nave
Often from Greek or Latin for a word containing the element or in honor of its discoverer.

Atomic mass
The average mass from the sum of both protons and neutrons.

Complete before the end of the period:
$1^{\text {st }}$ simply arrange the model atoms in the order you believe they were developed and appeared.
$2^{\text {nd }}$ Jot down what you hypothesize is the properly matched Scientist and their model.
NOTE Letters on Cards - See Cards (class activity)

1. Democritus / Dalton \qquad Thomson \qquad Rutherford \qquad Bohr \qquad Cloud \qquad Quantum \qquad Number the models $1-6$ fill in here.
2. Atoms are smaller than nanometers in size.

One millimeter equals 1000 micrometers. One micrometer equals 1000 nanometers.
This model atom measures 45 millimeters across on this page.
The scal here is $1 \mathrm{~mm}: 0.00444 \mathrm{~nm}$
Has the atom been scaled up (zoom in) or scaled down (zoom out)? circe one
3. In reality, this atom is really what size? Select the most accurate response.
A. 1000 nanometers
C. 0.2 nanometers

45 mm on this page

B. 1 micrometer
D. 45 millimeters
4. Pick any of the models from today and explain it. Use the terms Nucleus, Proton, Neutron, Electron 1-2 Sentences Legible \& tell me name of model. Dalton's mede/ had none of the above. Thomson's model had electrons. Rutherford's model had a nueleus. Neutrons or protons aren't really depicted in these models.
5. Why did many scientists oppose the Bohr Model when he first proposed it?

Discuss particles and charge
It was new radical forward thinking. They wanted to know. why er didn't crash into the positive nuelens. In fact this was the very
6. Extend: Cut a block of wood in $1 / 2$, then in $1 / 2$ again and again... How might Democritus have concluded, that it was not possible to divide a piece of matter forever?

If you cut a block of cheese w/ a knife, at what point can you no longer cut the blocks into halves.... When the piece is smaller than the knife blade.

